

ConnectedWayä, LLC

Authentication Mechanisms for ConnectedNASä SMB Client

White Paper

Date: October 2019

File Sharing for All Devices

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 3

Preface
ConnectedNASä is a powerful and robust software stack that enables remote file sharing
using the standard “Server Message Block”, SMBv1/v2/v3, networking protocols. These
protocols are in use today in Microsoftâ Windowsâ products, MacOSâ, and Linux systems
using the SAMBA software suite. The protocol is also used by various embedded and OEM
products.

ConnectedNASâ is designed for the OEM and mobile markets. It is supported by various
commercial RTOSes and deployed on a range of architectures. ConnectedNAS supports
both client and server use cases. Client use cases involve accessing remote files on a
deployed system while Server uses cases involve sharing local files with remote computers.

Given the robust nature of the SMB protocol and the types of systems that it has been
deployed on, various mechanisms for authenticating access have arisen. Some mechanisms
are appropriate for home or small office environments while others are more suited for
enterprise or cloud environments.

This paper will discuss supported models and use cases for authenticating client access to
remote files.

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 5

ConnectedWayä, LLC
Authentication Mechanisms for

ConnectedNASä SMB Client

October 2019

Version 1.0 Final

Prepared by

Richard Schmitt

rschmitt@connectedway.com

Owner and Product Architect

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 7

Table of Contents
PREFACE .. 3
TABLE OF CONTENTS .. 7
EXECUTIVE SUMMARY ... 9
TERMINOLOGY ... 11
AUTHENTICATION MECHANISMS ... 15
SMB PROTOCOL ... 17
CONNECTEDNASä SECURITY ARCHITECTURE ... 19

SASL .. 20
GSSAPI/SPNEGO ... 20
NTLMSSP .. 20
Kerberos ... 21

CONNECTEDNASä SMB CLIENT ARCHITECTURE ... 23
APPLICATION LAYER ... 23
PROVIDER LAYER ... 23
API LAYER .. 24
FILE LAYER ... 24
SMB CLIENT .. 24
CONNECTEDNASä FILE NAMING ... 25
CONNECTEDNASä CONFIGURATION .. 26
CREDENTIAL MANAGER .. 27

CONNECTEDNASä AUTHENTICATION USE CASE ... 29
LOGIN CREDENTIALS ... 29
DIRECT API .. 30

Direct API, Unmanaged Credentials ... 30
Direct API, Managed Credentials ... 32

PROVIDER MODEL ... 34
Provider Layer, Unmanaged Credentials ... 34
Provider Layer, Managed Credentials .. 35

CONCLUSION ... 37

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 9

Executive Summary
ConnectedNASä is a robust, professional, and commercial software package that enables
networked file sharing between client and server devices. In order to ensure privacy and
security of networked content, it is imperative that access be authenticated.

In the early days of networking, an identity could be established by simply exchanging a
username and password in cleartext between partners. Over the course of the following
decades, more sophisticated mechanisms for establishing this identity have evolved.

Today, there are essentially two approaches for authenticating a user: one where a user is
authenticated against a specific computer or device and another where the user is
authenticated on the network and that authentication is used to access resident computers
and devices.

There are various ways these two approaches can be deployed in a system to provide
various capabilities and use cases. The architecture of the ConnectedNASä authentication
mechanisms is discussed and supported use cases for deployment will be detailed.

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 11

Terminology
When discussing authentication, there are concepts and terms which are often confusing or
overloaded with other terms, making an understanding of the concepts difficult. To help
with this challenge, the terms used throughout this document are introduced here. Many of
these concepts and terms will be discussed in more detail in follow-up sections.

Term Description

Active Directory A Microsoftâ term used to define the system that
authenticates users on a network.

Asymmetric Key A public or private key used as part of a key pair.
One endpoint uses the public key while the other
endpoint uses the private key. An asymmetric
key pair is useful to provide a remote with a public
encryption key that can only be decrypted with
the private key.

Authentication The act of validating that a particular user has
access to some resource

Authid A GSSAPI term which represents the
authenticated object. This is synonymous with
security principal.

Confidentiality A capability that the endpoints of a
communications channel can provide whereby the
data being transferred cannot be read by any non-
participating node. (i.e. encryption)

Credential Metadata used to authenticate with a File Server
or a Directory Server

Credential Cache An active directory term referring to a set of
authentication credentials that are currently
active. The Kerberos stack typically manages a
credential cache.

Directory Server A server used for authentication when Domain
Mode is used.

Domain A collection of users and resources managed by a
Microsoftâ Windows Active Directory.

Domain Mode A ConnectedNASä concept that specifies that
authentication is performed against a network
rather than an individual server

File Server A server that allows access to locally sourced files.
Distinct from a “Directory” Server, and a “Doman
Controller” although the latter two are also
sometimes called servers

FQDN A “Fully Qualified Domain Name”. Directory
Servers are specified with a FQDN. An FQDN is a
DNS name such as directory.example.com. Fully
Qualified implies that it is complete, containing no
default or implied names.

GSSAPI

An application API used by ConnectedNASä to
access the authentication libraries.

Authentication Mechanisms for ConnectedNASä SMB Client

 Connected Way, LLC 12

Integrity A capability that the endpoints of a
communications channel can provide whereby the
data being transferred can be guaranteed not to
be modified by any non-participating node. (i.e.
signing)

Kerberos A technology and protocol used for network
authentication

Key A cryptographic blob used to access data. A key is
specific to the cryptographic algorithms being
used. There are two basic forms of keys:
symmetric and asymmetric.

NTLMSSP Also simply called NTLM, it is an authentication
protocol that allows file server sign-on (as
opposed to network sign-on).

Password A sequence of bytes, typically a word or phrase,
used to establish a trust relationship between two
systems. Passwords should never be stored in
cleartext or transferred over a network.

Principal Also known as a Security Principal. An
authenticated object. A fully specified user is a
principal as well as a computer or even a service.

Realm The set of authentication entities managed by a
directory server. Similar to a Microsoftâ Windows
Domain.

Samba An open source software package that provides
remote file access and other functions. Primarily
used on Linux although available on other
platforms.

Samba ad-dc The Active Directory/Domain Controller
component of the Samba open source solution.

SASL Secure Authentication API and Programming
paradigm. SASL allows a single API that
interfaces to multiple and nested authentication
mechanisms. ConnectedNASä utilizes a SASL
programming model.

Server Mode Synonymous with Workgroup Mode

Session A state where a user has authenticated.
Authentication can have been acquired in Domain
Mode or Workgroup Mode.

Session Key A key derived from authentication and never
transferred directly between endpoints. Used to
provide confidentiality and integrity of the data
transfer during the session.

Single-Sign-On An authentication process synonymous with
Domain Mode that allows a single sign on to the
network, and that subsequent access to other file
servers within the network can utilize the previous
authentication.

SPNEGO A protocol wrapper for authentication protocols
that allow for negotiation of the authentication
mechanism by the end points.

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 13

Symmetric Key A key shared between two endpoints that can
encrypt and decrypt a data blob.

Username Represents a user, but it is not fully qualified. To
be useful with Kerberos, it would need to be
further specified with a FQDN.

Workgroup Mode A ConnectedNASä concept that specifies that
authentication is performed on a server device
rather than a network. Also referred to as Server
Mode

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 15

Authentication Mechanisms
Authentication is the process of proving that a client is who they say they are and that that
client has the appropriate privileges for accessing the server. The simplest form of
authentication is a username/password. In this scheme, the server knows all possible users
and their respective passwords. If a client can present the username and correct password
to the server, then that user is able to authenticate.

There are numerous problems with this approach. The most glaring is that if a bad actor is
able to snoop on the network, they would be able to observe the presented username and
password. They would then be free to use those credentials for obtaining their own access
at some later time. This type of access is called cleartext authentication and it is no longer
used in smbv2/v3.

An authentication mechanism used by some secure websites leverages public key
encryption. This mechanism uses the concept of asymmetric and symmetric keys to
encrypt an authentication session. The client contacts the server and the server in turn
generates a public/private key pair. The server will keep the private key and send the
public key to the client. The client creates a symmetric session key, encrypts it using the
public key and sends it to the server. Since the server has the private key, it is able to
decrypt the session key. It then uses the session key to encrypt and decrypt the
authentication session. This type of authentication is called PKI and is not used in SMB file
sharing.

Early versions of SMB used an authentication mechanism called LM involving what is called
shared secret. In this type of authentication, each side knows the password, but it is never
transferred over the network. Instead, the password is used to create a hash, or secret,
using the same algorithm on both the client and the server. The secret is shared and if it
matches, it proves that the client knew the correct password in order to generate the
secret. This type of authentication has numerous weaknesses and is also not used.

A variation on shared secret is challenge response. With challenge response, the client
notifies the server that it wishes to authenticate. The server creates a unique challenge and
sends that to the client. The server uses this challenge along with the password to create a
unique response. Since the server remembers the challenge, it knows what the response
should look like if the client knows the correct password. This is the fundamental approach
to NTLMSSP, the authentication mechanism used in the SMB Workgroup model.

The last type of authentication we will discuss is called Kerberos, which is a ticket based,
third party mechanism. The inner workings of Kerberos utilize a combination of asymmetric
and symmetric keys to prove the identity of the client to the server. Because it involves a
third party, the ticket can be shared across the network to prove to multiple parties that the
client knows the password. This mechanism is the authentication used by Active Directory,
the Domain model of ConnectedNASä.

In summary, ConnectedNASä utilizes either NTLM or Kerberos. Which mechanism is used
depends on many factors. Primarily, it depends on the configuration of the network and
servers that the client is deployed within. Secondarily, it depends on the configuration and
build of the ConnectedNASä SMB client. To use Kerberos, ConnectedNASä requires a
Kerberos implementation to interface with on the client. ConnectedNASä supports MIT
Kerberos-5 and provides packaging for this on many of our supported platforms.

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 17

SMB Protocol
Early versions of the SMB protocol have been around since the advent of personal
computers. It has undergone numerous enhancements and one major revision (although
the version numbering implies 2 major revisions). SMBv1 was part of the early LANMGR
support and only now is being deprecated. SMBv1 had numerous security vulnerabilities, its
resource management was cumbersome, inefficient, and complex yet limited for its support
of enhanced functionality. SMBv1 was also called CIFS. In 2006, SMBv2, a rewrite of the
underlying protocol, was released. SMBv3 is considered an incremental update to the v2
version primarily focused on functional enhancements for virtualization and security.

ConnectedNASä supports all versions but our SMBv1 stack is being deprecated and our
SMBv3 support is limited to SMBv2 functionality with the addition of SMBv3 encryption.

SMB is a client / server protocol. The file request initiator is the client and the remote
device that hosts the desired content is the server. The protocol is session based.
Establishing a session involves setting up a network connection, negotiating the SMB
protocol, authenticating and setting up security for the session. Once a session is
established, the client can connect to shares, and perform file operations.

This paper will address how ConnectedNASä negotiates the authentication mechanisms,
executing the mechanism, and using data from the authentication to provide confidentiality
and integrity throughout the session.

The first protocol exchange is the negotiation exchange. An example of a decoded
negotiation packet is shown below:

From this packet, it is clear that the server supports three types of authentication
mechanisms: Microsoftâ Kerberos 5, Generic Kerberos 5, and NTLMSSP. From this
information, the client is able to determine the SMB version and the authentication
mechanism to use. The second stage is the session setup stage. During session setup, the
client may enter into a negotiation with a third party to obtain an authentication ticket and
present this ticket as part of the setup stage (as is the case with Kerberos), or may
negotiate directly with the server (as is the case with NTLMSSP).

Authentication Mechanisms for ConnectedNASä SMB Client

 Connected Way, LLC 18

An example of the Session Setup Request is shown below. The client has chosen KRB5 as
the authentication mechanism and has presented the ticket to the server.

The actual authentication mechanism used is independent of the SMB protocol. It is
specified by the GSSAPI and SPNEGO headers. The authentication protocol and data is
embedded as an opaque blob into the setup packets. As a matter of practicality, all modern
SMB servers support either Kerberos or NTLMSSP or both. Since ConnectedNASä supports
both mechanisms, it is able to authenticate with any SMB server.

The authentication negotiation also produces a “session key”. As is the case with a shared
secret, the session key is never actually sent across the network, but rather it is derived by
both the client and server. This session key is used to calculate a signature over the SMB
protocol packets and placed within the SMB protocol header thereby ensuring the integrity
of the protocol packet.

Following the session setup, subsequent SMB packets will contain a signature in the header
as shown below:

A bad actor on the network is unable to modify the SMB packets since it is not privy to the
session key and cannot regenerate a valid packet signature. A derivation of the session key
can also be used by the endpoints to encrypt and decrypt the protocol packets and data.

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 19

ConnectedNASä Security Architecture
A high-level architectural view of the ConnectedNASä Security Architecture is shown below:

ConnectedNASä includes a SASL software library derived from Cyrus SASL. We’ve written
our own GSSAPI/SPNEGO layer that plugs into the SASL stack. Although, as shown in the
packet contents above, GSSAPI and SPNEGO are distinct protocols, we have implemented
them as a single protocol layer since they will always appear together. Our GSSAPI layer
supports two authentication protocols: Kerberos and NTLMSSP. The plugin API for GSSAPI,
Kerberos, and NTLMSSP are all compatible. Technically, our Kerberos and NTLMSSP layers
could connect directly to our SASL layer but that would remove the negotiation ability of the
SPNEGO layer.

The Kerberos plugin for SASL interfaces with the third-party MIT Kerberos Library. This
implies that in order to support the Kerberos authentication mechanism, the MIT Kerberos
library must be installed or ported to the platform. ConnectedWay has ported the MIT
Kerberos library onto Android and integrated it into our ConnectedNASä Storage Provider
for Android. We have also integrated ConnectedNASä with the MIT Kerberos library on
MacOS, Linux, and other platforms. Please discuss your specific RTOS requirements with
ConnectedWayä to understand the availability of Kerberos on your platform.

SMB Client

SASL Client

GSSAPI / SPNEGO

Kerberos
Interface NTLMSSP

MIT Kerberos

Authentication Mechanisms for ConnectedNASä SMB Client

 Connected Way, LLC 20

SASL
ConnectedNASä chose a security architecture based on the “Simply Authentication and
Security Layer (SASL) specified as RFC 2222. Alternatives to SASL could have been
Microsoftâ SSPI, Samba’s GSE, or a proprietary architecture. We derived our SASL layer
from the Cyrus SASL package. Cyrus SASL is licensed under the permissive CMU software
license which allows use, modification, and distribution in source or binary form as long as
the origin of the software is noted within the code and in the distribution.

There are some limitations to the Cyrus SASL library as distributed. It’s support for SMB is
limited and does not support session keys. So, we have ported and rewritten parts of this
library.

SASL presents a fairly simply API implemented by most security providers. SASL is session
oriented. There are calls to create sessions and start an authentication exchange within the
session. The authentication exchange involves successive calls to a step function. Where
opaque blobs are passed in and out of the SASL layer. These opaque blobs are simply
copied as is into and out of the SMB Negotiate and Session Setup packets. For each SASL
exchange, there is a corresponding SMB Session Setup and Negotiate exchanges.

Upon startup, SASL configures the various plugins it supports. Connected NAS supports the
following three plugins:

• GSSAPI/SPNEGO
• NTLMSSP
• Kerberos

All three plugins support the SASL API model for sessions and authentication steps.

GSSAPI/SPNEGO

GSSAPI is considered a wrapper protocol. The data received from the negotiation and
session setup exchanges are considered just blobs of data from an SMB perspective.
Without a wrapper of some sort, there would be no identifying characteristic of the data.
GSSAPI wraps the enclosed data with a small envelope and identifies that data. The
enclosed data, in our case, is an SPNEGO packet.

SPNEGO is a negotiation protocol. It provides a simple protocol that allows a server to
present various supported security protocols that can be scanned by the client. The client
will then be able to select the desired protocol. For ConnectedNASä, if a server supports
Kerberos, and if the client has been built with Kerberos support, we will select Kerberos as
the method. Otherwise, we will select NTLMSSP if presented. If, by chance, the server
supports neither Kerberos nor NTLMSSP, the client will refuse to authenticate.

In addition to negotiating the authentication protocol, GSSAPI with SPNEGO also wraps the
specific authentication handshake. Depending on the authentication mechanism, the
GSSAPI/SPNEGO layer will configure the session with a child SASL layer as Kerberos or
NTLMSSP. As the authentication handshake progresses, GSSAPI/SPNEGO will unwrap the
presented authentication data, pass it off to the child SASL layer, and then wrap the output
from the child with GSSAPI/SPNEGO and return it through the SASL infrastructure to the
SMB application.

The GSSAPI/SPNEGO layer also provides a conduit for obtaining the negotiated session key
from the underlying mechanism.

NTLMSSP

NTLMSSP is the authentication mechanism used for workgroup or server authentication.
This is a type of authentication that involves just the SMB client and SMB server. The
server creates what is called a nonce, essentially a random number, and sends this to the

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 21

client. The client creates an md5 hash with this nonce and the password (and other
information) and sends the hash back to the server. Note that the password was never sent
in cleartext. The only thing sent was the md5 and there is no direct way of reversing the
md5 to derive the password.

The drawback of NTLM is that given enough time, a hacker could simply attempt to
regenerate the hash given the nonce and all possible passwords. This is why password
length and construction are critical. For example, a simple 5-character password can be
cracked in about a second. A 12-character password with a combination of letters and
characters can take millions of years.

This password hash is used to generate a session key which is shared between the client
and the server, yet never sent over the network. The session key, in turn, is used to both
sign and/or encrypt the SMB traffic.

ConnectedNASä has implemented all the crypto algorithms required for generating and
verifying this hash so no third-party packages are required.

Kerberos

Kerberos is the authentication mechanism used today by most enterprise file servers. It is
the basis of Active Directory and Microsoftâ Domain Controllers. With Kerberos, A client
authenticates with the domain controller and obtains a “ticket” as a result. This ticket
signifies that the client has successfully authenticated and can be subsequently used to
authenticate with multiple network services. The domain controller may physically be a
different computer than the computers hosting the network services.

Separating the authentication server from the target service allows the reuse of the ticket
for multiple services on multiple servers. This is referred to as “single-signon”. A related
ability is to reuse the ticket across multiple clients on the same computer. After one client
service has authenticated and obtained a ticket, the ticket can be reused by other client
services. This utilizes the notion of a “credential cache” in Kerberos terminology. Tickets
are granted with a defined lifetime and will expire. Tickets may need to be renewed if they
continue to be needed. Typically, the first ticket in a credential cache is the default or login
ticket.

In a simple client/server authentication model, a client authenticates with a server using a
username and a password. With Kerberos, a client authenticates using a principal and a
password. A principal is similar to a username that is augmented by a service name and a
“Fully Qualified Domain Name” (FQDN) using the form service/user@fqdn. The service for
SMB has been defined as “cifs”. So, an SMB principal for a user named “scientist” in the
domain “kdc.lab.com” is cifs/scientist@kdc.lab.com.

In the event that a network client does not support Kerberos, it may still be able to
authenticate with the domain by using the target server as a Kerberos Proxy over NTLM for
the client. That is, the client can provide the credentials through NTLM and the server can
authenticate with the directory server on behalf of the client.

A Kerberos implementation would be a significant undertaking to write from scratch. There
are two leading Kerberos implementations: MIT and Heimdal. ConnectedNASä deploys the
MIT Kerberos package with the SASL layer. The MIT Kerberos package is relatively portable
and can be made available on most all modern RTOSes. If you find you need a Kerberos
stack on your platform feel free to discuss the porting effort with ConnectedWay.

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 23

ConnectedNASä SMB Client Architecture
The overall architecture of the ConnectedNASä SMB Software Stack is shown in the
following illustration.

Some description of the layers relevant to authentication and their function follows:

Application Layer
The application layer is the application that issues the file I/O requests. This is typically
third party or customer code that wishes to be enabled with access to a network file system.
For example, the application layer could consist of code like Microsoft Wordâ, Oracleâ, a
Video Player or any other piece of software. There are five basic types of Application
models supported by ConnectedNASä:

• A Native Linux, Windowsâ, or MacOSâ application using a FUSE framework.
• A Native Androidâ application using the Android Storage Access Framework
• A Native iOSâ application using the iOS Document Provider Framework
• A Java application using the ConnectedNASä java.io JNI layer
• A generic application using one of the ConnectedNASä APIs directly.

There are two types of application layers, those that use a provider layer and those that do
not. If the application layer does not use a provider layer, it should handle error returns
that indicate authentication failures, query for updated credentials, and reissue the request.
This will be discussed more in the section on use cases (ConnectedNASä Authentication Use
Case).

Provider Layer
This layer is relevant in select OS architectures where access to storage can be provided by
a storage provider. Different OS’s support different storage providers:

• Androidâ provides the Storage Access Framework that can provide Document
Providers. ConnectedNASä for Android includes a Document Provider

• iPhoneâ OS provides the iOSâ Document Provider framework.
• MacOSâ provides a User Mode File System driver called osxfuse

(osxfuse.github.io).
• Linux provides a native User Mode File System driver called fuse

Authentication Mechanisms for ConnectedNASä SMB Client

 Connected Way, LLC 24

• Windowsâ provides a User Mode File System driver called dokan (dokan-
dev.github.io).

• ConnectedWayä provides an SMB Server storage provider that turns any enabled
ConnectedNASä device into an SMB Server.

The provider layer, if used, will handle authentication failures of requests. Refer to the
section on Use Cases (ConnectedNASä Authentication Use Case) for more detail.

API Layer
Below the Provider Layer is an API Layer which provides various interfaces to applications
that wish to interact with the SMB client. ConnectedNASä provides the following APIs:

• WinAPI. The native ConnectedNASä File API. Most Windows File APIs like
CreateFile, DeleteFile, ReadFile, etc. are supported including Overlapped I/O, File
Attributes, and Handles.

• Posix. For ease of porting existing Posix applications, ConnectedNASä provides a
Posix API that interfaces to our SMB client.

• Java I/O. ConnectedNASä provides a Java Native Interface (JNI) that extends
existing virtual machines with SMB Client support. The JNI is modeled after the
java.io framework.

• RTOS APIs. For select RTOS’s, ConnectedNASä provides a RTOS compatible API
set. This allows for easy porting of existing RTOS applications.

All ConnectedNASä APIs support an extension to file naming compatible with the APIs
naming scheme. This extension presents a flat namespace for network and native files.

File Layer
The File layer provides file I/O redirection to various file system handlers. These file system
handlers include:

• The SMB Client
• A Darwin (MacOS) file API
• A Posix API compatible with Linux and Android.
• A native Windows and Windows Mobile API
• A Virtual File System
• A Pipe File System
• A Mailslot File System
• ThreadX’s FileX and Mentor Graphics NuFile file systems.

SMB Client
The SMB Client is the SMB v1/v2/v3 protocol engine and connection session manager. The
details of this layer are beyond the scope of this paper, but it is important to note that the
SASL authentication occurs within this component. So, an authentication failure will be
detected in this layer and passed up to the higher layers.

It’s also worth noting that the SMB client is a “real-time” component. That is, the
component is non-blocking, and event driven. Events are either application requests,
network packets received or timeouts. The SMB client can handle multiple client sessions to
multiple servers. It is also single threaded although multiple clients can be run on SMP
systems.

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 25

ConnectedNASä File Naming
A common component of all the various APIs and the underlying SMB client is the file
naming. In order to provide a flat namespace for files, we have encoded credentials,
servers, shares, paths, and file names all in one global path supported by all components of
ConnectedNASä. This encoding is referred to as the “Universal Naming Convention”.

It is of the form:

[\\[username[:password[:domain]]@]server[:port]\share]\path\file

Either a forward slash (/) or backwards slash (\) can be used interchangeable in the name.
The ‘%’ character is an escape character and can either escape another % or a two-digit
hex number representing the hex value of an ascii character.

All of the following are valid names:

Name Description

/home/user/file.name A Posix style path to
file.name

//server/share/path/file.name A file in the share
‘share’ on server
‘server’ with relative
path ‘path/file.name’.
The server is
accessible at the
default SMB port of
445. This will use
default login
credentials for the
server. See section
ConnectedNASä
Authentication Use
Case for descriptions
on how the default
credentials are
obtained.

//server:8445/share/path/file.name Same as previous
except the SMB server
is accessible at port
8445 rather than the
default.

//user:pass@server/share/path/file.name Authenticate with
username ‘user’ and
password ‘pass’ and
access file on server
‘server’, share ‘share’,
and relative path
‘path/file.name’

Authentication Mechanisms for ConnectedNASä SMB Client

 Connected Way, LLC 26

Name Description

//user:pass:domain.example.com@server
/share/path/file.name

A fully qualified name
using credentials for
user ‘user’, password
‘pass’ in the Kerberos
domain
‘domain.example.com’

The ConnectedNASä File API will return errors to the provider or application layer specific to
the API if access to the file or path is denied for security reasons. The provider or
application layer can reissue the request with updated credentials.

ConnectedNASä Configuration
ConnectedNASä SMB Client has two modes of configuration operation: Managed and
Unmanaged. In the Unmanaged mode, ConnectedNASä will initialize and operate without
any persistent state. There will be no saved credentials, or remote shares and the network
configuration will operate in a default mode. In Managed mode, the ConnectedNASä client
will maintain its runtime configuration and restore it after restart.

ConnectedNASä maintains its configuration as an XML file. There are two sections of the
configuration relevant to authentication: The server section and the credentials section. The
server section identifies configured remotes for the client. Within the remote entry, there is
a credential field that can be one of three types: a login type, a domain type, or a server
type. A domain type refers to an entry in the credential section and is intended to be used
for authenticating with the Kerberos subsystem. The server type is credentials specific to
that server and intended to authenticate with that server only. A Login type is used to
specify that the default login ticket is to be used by the ConnectedNASä software. For the
login type, the actual credentials are managed outside the context of ConnectedNASä.

A remote server entry for the ConnectedNASä client contains:

• Server name
• Credential type

• Login Type
• Domain Type

• Ticket id (username@fqdn)
• Server Type

• Username
• Domain
• Password

A credential entry for the ConnectedNASä client identifies credentials for Kerberos tickets.
The entry contains:

• Principal (username@fqdn)
• Password

Whether the XML file is stored, i.e. whether ConnectedNASä operates in Managed mode, is
configurable at build time for the target system. Whether passwords are stored is
configurable during runtime as a global configuration option. If the XML file is being stored
it will be encrypted. The encryption key will be queried during startup of the software
package.

See the section on use cases (ConnectedNASä SMB Client Architecture) for how this
behaves on the various supported platforms.

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 27

Credential Manager
Tightly coupled with the configuration manager is the credential manager. There are two
interfaces to the credential manager: one for the applications or providers to update and
query credentials and one for the authentication component of the SMB client to retrieve
credentials.

The credential manager supports functions similar to the Kerberos utilities kinit, kdestroy,
kpasswd, and klist. This integration is useful for those platforms with no other interface to
the Kerberos subsystem other than ConnectedNASä.

When the SMB client attempts to authenticate with a remote, it will query the configuration
manager using the server name. The configuration manager, in turn, will look up the server
in the configuration and determine if the credential is a login, server or domain credential.
If it is a login credential, the credential manager is not managing it so empty credentials will
be returned. If it is a server credential, then the info in the server configuration will be
returned. If it is a domain credential, then info from the credential configuration will be
returned.

Failures are returned to the provider or application. The provider or application, in turn, can
query and update the credential manager with new credentials and then reissue the request
or it can simply reissue the request with a fully qualified universal name (as discussed in
section ConnectedNASä File Naming).

See the section on use cases (ConnectedNASä Authentication Use Case) for how this
behaves on the various supported platforms.

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 29

ConnectedNASä Authentication Use Case
There are two main modes for discussing the authentication use cases: Provider Mode and
Direct Mode. ConnectedNASä provider mode interfaces include FUSE for Linux, Windows,
and MacOS, and the Android ConnectedNASä Storage Provider. In provider mode, native
file I/O requests pass through the provider layer where the file names are translated into
Universal File Names. In direct mode, applications directly interface to the File API layer.

Both the provider model and the direct model support two sub-modes: managed and
unmanaged where credentials are managed by a credential manager or not.

The legacy operation of ConnectedNASä is direct, unmanaged.

The following use cases will be discussed:

• Applications or Providers using Login Credentials Only
• Application specifying Universal File Names and interfacing with the File API

directly.
• Credentials unmanaged by the ConnectedNASä SMB client. NOTE: This is the

legacy behavior. (Direct, Unmanaged)
• Credentials managed by ConnectedNASä using the credential manager

(Direct, Managed)
• Provider Layer providing mapping of Native File Names to Universal File Names

• Credentials unmanaged by the ConnectedNASä SMB client (Provider,
Unmanaged)

• Credentials managed by ConnectedNASä using the credential manager.
(Provider, Managed)

Login Credentials
The Login Credentials Use case is really just a special case of the Application or Provider
Layer in Unmanaged credential mode. We highlight it separately because it is such an
important mode that we see as the primary use case on enterprise deployments.

With a login credential, the credential info is maintained outside of ConnectedNASä and is
why it is similar to the unmanaged case. The login use case only makes sense when using
domain login using Kerberos. In the legacy ConnectedNASä SMB client using SMBv1, the
lack of a credential specification indicated anonymous authentication. The support for
anonymous authentication has been deprecated in later versions of SMB due to various
vulnerabilities and the fact that a session key, required for packet signing or encryption, is
derived from a secret password. Anonymous authentication defeats these security features.

In a domain model, the default authentication ticket is obtained typically upon login.
Applications, and Provider Layers do not need to provide credentials to the SMB Client. The
client will use the default credential from the Kerberos stack for access to all remote
servers.

This can completely free the Application from managing remote credentials.

Authentication Mechanisms for ConnectedNASä SMB Client

 Connected Way, LLC 30

Direct API
The Direct API is illustrated below:

It’s a pretty simple model. The Application interacts directly with the SMB Client using the
ConnectedNASä API.

Direct API, Unmanaged Credentials

This is the legacy behavior of the ConnectedNASä SMB Client. In this mode, the application
passes universal file names which include the credential information in the file name, to the
File API. This file name is passed into the SMB client, the credentials are parsed out of the
name, and used during authentication with the remote server.

If the credentials are missing or invalid, authentication will fail, and an authentication error
will be passed up to the application. The application, in turn can query for updated
credentials and reissue the request.

For example, see the following code snippet. Comments will be provided italicized
preceeding the snippet:

The filename is initialized to some default path, with or without credentials. It is placed in
the heap so we can manipulate the file name with credentials as needed.
 filename = BlueCtstrdup (TSTR(“//server/share/path/*”);

APIs using filenames are wrapped with a while loop so that the APIs can be reissued with
updated credentials if needed.
 while (retry == BLUE_TRUE)
 {

Call the File API with the universal file name. NOTE the API is similar to the Windows API.
 list_handle = BlueFindFirstFile (filename, &find_data, &more);

If we obtained a valid handle, then the API call was successful, and we will exit the loop
 if (list_handle != BLUE_INVALID_HANDLE_VALUE)
 retry = BLUE_FALSE ;
 else
 {

The call failed. Get the last error and print it for those following along.

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 31

 last_error = BlueGetLastError () ;
 BlueCprintf ("Failed to list dir %A, Error Code %d\n",
 filename, last_error) ;

Check for authentication failure
 /*
 * LOGON_FAILURE can be returned if authentication failed
 * ACCESS_DENIED if authentication succeeded but no access to share
 * INVALID_PASSWORD if password different then connection
 */
 if (last_error == BLUE_ERROR_LOGON_FAILURE ||
 last_error == BLUE_ERROR_ACCESS_DENIED ||
 last_error == BLUE_ERROR_INVALID_PASSWORD)
 {

Query and Read updated Credentials
 BlueCprintf ("Please Authenticate\n") ;
 BlueCprintf ("Username: ") ;
 BlueReadLine (username, 80) ;
 BlueCprintf ("Domain: ") ;
 BlueReadLine (domain, 80) ;
 BlueCprintf ("Password: ") ;
 BlueReadPassword (password, 80) ;

Convert these to Unicode because the API we’re using is Unicode. We also support ASCII
APIs.
 tusername = BlueCcstr2tastr (username) ;
 tdomain = BlueCcstr2tastr (domain) ;
 tpassword = BlueCcstr2tastr (password) ;

Update the universal file name with the updated credentials.
 /*
 * Now remap the device
 */
 BluePathUpdateCredentials (filename, tusername,
 tpassword, tdomain) ;

Free up the Unicode copies of the credentials so we do not cause a leak.
 BlueHeapFree (tusername) ;
 BlueHeapFree (tpassword) ;
 BlueHeapFree (tdomain) ;
 }
 else
 {

Not an authentication error. Stop retrying and let the normal error recovery handle the
scenario.
 retry = BLUE_FALSE ;
 }
 }
 }
Free the heap copy of the filename. Also, at this point, list_handle will either be a valid
handle or the value BLUE_INVALID_HANDLE.
 BlueHeapFree (filename) ;

Authentication Mechanisms for ConnectedNASä SMB Client

 Connected Way, LLC 32

This sequence is illustrated below:

To use this kind of authentication model, it was recommended that ALL APIs that utilized a
file name be wrapped with this kind of wrapper. There are ways this example could be
made more generic to minimize code clutter.

The above example is generic for the type of credential: login, domain, or server. If the
ConnectedNASä SMB Client is being deployed into a domain where all credentials are login
credentials, and the login occurs prior to using the API, the example could have been
written without the wrapper:
 list_handle = BlueFindFirstFile (TSTR(“//server/share/path/*”,
 &find_data, &more) ;

Even in the absence of a ConnectedNASä credential manager, the Kerberos subsystem will
use the login ticket by default for all authentication requests. It is clear that through the
use of domain credentials, the API model is greatly simplified.

Direct API, Managed Credentials

With managed credentials, the application need not construct universal file names with
embedded credentials. Rather, the Application would update the configuration in the
credential manager and reissue the request.

To facilitate this, there is a new configuration API added that allows a credential.

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 33

typedef enum {CRED_LOGIN, CRED_SERVER, CRED_DOMAIN } BLUE_CRED_TYPE ;
BLUE_UTIL_LIB BLUE_VOID BlueConfigUpdateCredential (BLUE_CHAR *server,
 BLUE_CRED_TYPE type,
 BLUE_CHAR *user,
 BLUE_CHAR *domain,
 BLUE_CHAR *pass);

If the server doesn’t exist in the configuration, it will be added. The configuration will be
updated as otherwise appropriate.

The example would look mostly the same as above. The exception being that the call to
BluePathUpdateCredentials will be replaced by a call to BlueConfigUpdateCredential.

The SMB Client, upon receiving a request for a remote session, will call the credential
manager to obtain the credential information for the server. The SMB Client knows to query
the credential manager based on the absence of credential information in the universal file
name. If the server credential is a login type, the SMB client will allow the underlying
authentication module (Kerberos or NTLMSSP) to use its default credentials. If the
credential is a server type, the credentials will be obtained from the server configuration
and if it is a domain type, the credential will be obtained from the credential configuration.

This interaction is shown below:

Instead of calling BlueConfigUpdateCredential within a wrapper as above, it could be
initialized before the application is run. This would allow the wrapper to be removed. That
is, the application could initialize the managed credentials through a separate user interface
that must be invoked prior to accessing files using the API. Authentication failures could
simply direct the user to some credential user interface managed by the application.

The advantage of using the managed credential model is that the credentials are
remembered. If the configuration file is stored and if passwords are remembered, then
once the credentials are updated, there would be no need to provide credentials in the API
calls and no need to check for authentication failures other than to report them. Whether

Authentication Mechanisms for ConnectedNASä SMB Client

 Connected Way, LLC 34

credentials are updated within a wrapper, or whether they are updated as part of a
credential user interface is determined by the application developer.

Provider Model
A provider layer is used to translate native file requests to network aware universal file
request and to interact with the ConnectedNASä File API. As mentioned elsewhere,
ConnectedNASä provides Linux, Windows, and MacOS FUSE layers, and Android and iOS
Document Providers as provider layers.

When using a provider layer, the responsibility for providing credentials and for managing
those credentials falls within the provider layer.

This is illustrated below:

Provider Layer, Unmanaged Credentials

Both FUSE and “document provider” provider layers use a map to translate between the
native file name and the universal file name used by the ConnectedNASä SMB Client. When
the provider layers are using unmanaged credentials, it is this map that is updated with the
credentials.

This is the way our initial version of the Fuse and Android document providers work. The
remote servers and their respective maps are initialized with credentials that were passed
into the SMB Client as part of the universal file name.

Upon authentication failures, the provider layer could query the user interface for updated
credentials and update its map. This would imply that the provider layer has an
authentication loop similar to that used in the Direct API case. In fact, the discussion of the
Direct API, Unmanaged Credentials use case applies to the provider layer case as well. The
difference is that the interaction for the credentials is performed in the provider layer and is
completely hidden from the application.

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 35

This sequence is illustrated below:

Provider Layer, Managed Credentials

With managed credentials, the provider layer need not construct universal file names with
embedded credentials and its map need not include any credential information. Rather, the
provider layer, upon authentication failures, updates the configuration in the credential
manager and reissues the request.

The discussion in the section, Direct API, Managed Credentials is also relevant to this mode
with the exception that the authentication error handling occurs within the provider layer
rather than the application layer.

Authentication Mechanisms for ConnectedNASä SMB Client

 Connected Way, LLC 36

The Sequence Diagram is shown below:

Authentication Mechanisms for ConnectedNASä SMB Client

Connected Way, LLC 37

Conclusion
This white paper has outlined the basic architecture of the ConnectedNASä SMB Client from
the perspective of authentication and privacy. It has also introduced the packets used by
the SMB protocol and the security related fields within those packets. Lastly, this paper
discussed the Use Cases supported by the ConnectedNASä SMB Client that can leverage
both the architecture and the protocols for offering the most robust and secure remote file
access capabilities available.

It is hoped that after reading this white paper, the reader will have a good vision of how
they could deploy ConnectedNASä for their unique application requirements. If, after
reading this paper, there are still open issues in how ConnectedNASä can be deployed,
please do not hesitate to contact the author.

